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Abstract

In the asymmetric synthesis of chiral compounds, the reduction of prochiral unsaturated reactants has a great importance.
(9-proline as a chiral auxiliary is used in the hydrogenations of exocgcBeunsaturated ketones with palladium on carbon
catalysts, producing the corresponding saturated ketones with an optical purity up to 20%. The influence of the parameters
(solvents, additives) on the optical yield is also investigated. The highest enantioselectivity was obtained in ethyl acetate and
acetonitrile (ee 20%), at atmospheric pressure and room temperature. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction The enantioselective heterogeneous hydrogenation

of the G=C double bond of,B-unsaturated acids and
Reduction of prochiral unsaturated substrates is an esters (particularly those bearing a nitrogen atom in

important method for the synthesis of chiral com- «-position) has been extensively studied [1-3]; such

pounds. There are several ways to prepare an opticallya reaction fora,3-unsaturated ketones has been rel-

active compound by reduction: atively well documented also, including mechanistic

e use of a chiral reducing agent, studies [4,5]. . . .

e hydrogenation with homogeneous chiral metal . Reports apouti)-prollne mediated enantms_elec-
tive synthesis, for example the hydrogenation of

complex catalyst, or with the same anchored on a isophorone [6] prompted us to use proline as a chiral
support material, 1Sop prompted us to use proli [

: . . . . auxiliary in other hydrogenations too.
diastereoselective reduction of optically active sub- . . o
* strate. and P y This method differs from the modified catalyst sys-

« hydrogenation with heterogeneous catalyst modi- tems, since the chiral agent is added in stoichiometric
' : amount directly to the reaction mixture. It was proved
fied by chiral compounds. 7 ) S -
that (§-proline/isophorone interaction is a specific
* Corresponding author. Tel#36-1-4631203,; reversible chemical react|c_>n [6]. .
fax: +36-1-4631913. Pd-on-carbon catalyst in presence @&)-proline
E-mail address: tungler.ktt@chem.bme.hu (A. Tungler). afforded dihydroisophorone in high (up to 60%)
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Scheme 1. The heterogeneous catalytic hydrogenatiorE)p2-penzylidene-1-indanoneE)-2-benzylidene-1-tetralone andE)(2-benzy-
lidene-1-benzosuberone.

enantiomeric excess. An oxazolidinone intermediate results in the saturation of the=C double bond, the

was formed prior to the hydrogenation by condensa- next one reduces €0 double bond and, finally, the

tion reaction of the $-proline and the unsaturated hydroxyl group is hydrogenolyzed.

ketone. The optically active saturated ketone arose The zwitterionic form of proline gives an addition

from the chemo- and diastrereoselective hydrogena- and/or condensation product with thg8-unsaturated

tion of the CG=C double bond in the oxazolidinone ketone for examples isophorone (Scheme 2).

[7]. In the case of the exocyclia,B-unsaturated ke-
Using the same method Sproline, Pd/C, in tones, the equilibrium concentration of such conden-

methanol) for exocycliax,3-unsaturated ketones the sation product is probably much smaller. In order to

chemoselectivity towards saturated ketones was not promote the reaction between tH®-proline and the

complete 90% or less and the ee was poor. substrate, sodium methylate (NaOMe) was added to
In this work, the heterogeneous catalytic hydro- the reaction mixture. In the sodium salt, the reactiv-
genation of E)-2-benzylidene-1-indanonel)(to 2- ity of the (§-proline grew. As a result the reduction
benzyl-1-indanone?), (E)-2-benzylidene-1-tetralone  became chemoselective and gave higher optical purity
(3) to 2-benzyl-1-tetralone 4f and E)-2-benzyl- for the corresponding saturated ketone.
idene-1-benzosuberong) to 2-benzyl-1-benzosuber- The hydrogenation ofH)-2-benzylidene-1-benzo-

one @) was investigated in order to find reaction suberonef)in methanolin the presence @proline
conditions where one can obtain higher enantios- and NaOMe was carried out, at room temperature
electivity (Scheme 1). The substrates can take up under atmospheric pressure; it resulted in 2-benzyl-
3 mol hydrogen in consecutive reactions according to 1-benzosuberones) with 100% selectivity and 12%
Scheme 1. Uptake of the first mole of hydrogen optical purity.
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Scheme 2. The possible condensation reaction betw®&eprdline and an,B-unsaturated ketone.
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2. Experimental Circular dichroism (CD) spectra were recorded on
a Jobin Yvon Dichograph Mark VI.
2.1. Materials Optical rotation data were measured with Perkin-

Elmer 241 automatic polarimeter £ 1 MeOH).

Compoundd and3 were prepared according to the The HPLC analyses were carried out on a
procedure described in [8], while was synthesized  Chiracel OJ column (@6 cmx 25cm). The column
as described in [9]. contains silica-gel as packing material coated with a

The catalyst was commercial product: 10% cellulose derivative. The eluent was hexan/2-propanol
Pd/C (Selcat) [10] (Fine Chemicals Co., Budapest, 90:10 (v/v), the flow rate was 1.0 ml/min. The UV
Hungary); ©-proline was purchased from Fluka; absorbance was measured at 249 nm.
sodium methylate from Merck; acetic acid and Enantiomeric excesses (%) were calculated accord-
pyridine, the solvents: methanol, acetonitrile, tetra- ing to the following equation:
hydrofurane, dichloromethane, toluene, isopropanol,
morpholine, hexane, acetone, cyclohexane, dimethyl- ge — M 100
formamide, ethyl acetate were supplied by Reanal, [A] +[B]

Budapest, Hungary.

The amino acids:-phenylalaninep-phenylglycine,
L-asparagine,n-valine L-glutamic acid, L-aspartic
acid, L-lysine, L-alanine, L-isoleucine, L-serine, L-
threoninep-tryptophang-arginine were also supplied
by Reanal, Budapest, Hungary.

where [A] is the concentration of major enantiomer
and [B] the concentration of minor enantiomer.

3. Results and discussion

2.2. Hydrogenations 3.1. Effect of additives

The hydrogenations were carried out in a conven- _ GVing the free amino acidJ-proline to the reac-
tional apparatus with magnetic stirrer at atmospheric tion mixture the selectivity of th_e hydrog_enanon?o)f
pressure. The working-up procedure of the reaction was about 90% and the enantioselectivity was up to

mixtures was the catalyst filtration and the removal 10% in methanol (Table 1).
of the solvent in vacuum. The residue was dissolved N these reactions, the effect of NaOMe/substrate
in dichloromethane and extracted with 5% HCl and 'atio and the g)-proline/substrate ratio were deter-

distilled water. The organic phase was separated angmined. The S)-proline/sub_strate ratio, 1 mol/mol and
dried over NaSOy. After filtration, the solvent was the NaOMe/substrate ratio, 1 mol/mol gave the best

removed in vacuum. enantiomeric excess. Not only the enantiomeric ex-
The product was analyzed by HPLC, from these cess incregsed above 10%, but the initial reaction rates
data conversion, selectivity and enantioselectivity val- Pecame higher also. _ . L
ues were calculated. The effect of different basic and acidic additives
such as NaOMe, pyridine and acetic acid on the enan-
2.3, Analysis tioselectivity is shown in Fig. 1. Neither the basic pyri-
dine and nor acetic acid produced the favorable effect

The determination of the absolute configuration °f NaOMe.

was based on the literature data [11,12]. Supposing
the same absolute conformation (same sign of the 3.2. Effect of amino acids
O-C-Cy—Cs torsion angle), the negative sign of the

nw* band at 319.6 nm §] = 1221,¢ = 2.34 mmol/l, In the presence of other amino acids the selectiv-
in EtOH) suggestR) absolute configuration of the ity of the hydrogenation ob was about 100% and
chiral center. the enantioselectivity was up to 12% in methanol

The NMR spectra were recorded on a Bruker (Table 2). Without NaOMe the hydrogenation gave
DRX500 spectrometer in CDgland C3CN. racemic product.
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Table 1

The effect of different amount of NaOMe on the enantioselectivity in the hydrogenatiéh of

(9-proline/substrate NaOMe/substrate Reaction rate b (@9 Configuration
(mol/mol) (mol/mol) (ml Hp/geatmin)

1 1 65 12.3 R

1 2 53 45 R

1 0.5 66 115 R

0.5 1 25 6.7 R

0.5 2 47 2.8 R

aConditions: 0.5 g E)-2-bezylidene-1-benzosuberon (substrate),
bee: enantiomeric excess.

15
10 +

ee(%)

acetic acid NaOMe

EyridinJ

Fig. 1. Influence of additives on the enantioselectivity. Conditions:
0.5g E)-2-bezylidene-1-benzosuberon, 0.05 g Pd/C (Selcat), 20 ml
methanol, 0.26 gJ)-proline, 1 mol equivalent additive, atmospheric
pressure and 2%C.

With other amino acids:-glutamic acid-aspartic
acid, r-lysine, L-alanine, L-isoleucine, L-serine, L-
threonine L-tryptophan L-arginine, the optical purity
was small £6-7%).

0.05g Pd/C (Selcat), 20 ml methanol, atmospheric pressut€.and 25

Table 2
The influence of different amino acids on the enantioselectivity in
the hydrogenation 052

Amino acids Reaction rate ee (%)  Configuration
(ml Ha/gcatmin)

L-Phenylalanine 104 12 R

p-Phenylglycine 67 8.4 S

L-Asparagine 102 8.0 R

p-Valine 95 8.3 S

aConditions: 0.5g substrate, 0.05g Pd/C (Selcat), 20ml
methanol, 1 mol equivalent amino acid, 0.12g NaOMe, atmo-
spheric pressure and 26.

3.3. Effect of solvents

The selectivity of the reaction, as well as the activity
of the catalyst, can be influenced by using appropriate

Table 3
The influence of different solvents on the enantioselectivity in the hydrogenatiéf of
Solvent Reaction rate ee (%) Configuration Reaction rate ee (%) Configuration
(ml Hz/gcatmin) (ml Ha/geatmin)
Without additive With NaOMe
MeOH 64 10 R 88 12.3 R
MeCN 97 0 - 97 20.1 R
EtOAC 92 2.9 R 63 20.8 R
THF 28 34 R 30 15 R
DKM 18 4.4 R 0 0 -
Toluene 68 0 - 25 7.9 R
Morpholine 9 2.0 R 24 0 -
DMF 50 75 R 41 3.1 R
Hexane - - - 98 7.0 R
Acetone - - - 14 8.4 R
Cyclohexane - - - 114 8.9 R
n-BuOH - - - 17 3.9 R

aConditions: 0.5 g [£)-2-bezylidene-1-benzosuberon, 0.05g Pd/C (Selcat), 0.86gréline, 0.12 g NaOMe, 20 ml solvent, atmospheric

pressure and 2%C.
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Table 4
The effect of different solvents on the enantioselectivity in the hydrogenatidnawfid 32
Solvent Substrates
1 3
Reaction rate ee d (%) Configuration Reaction rate ee 6f(%) Configuration
(ml Ha/gcarmin) (ml Ha/gcatmin)
MeOH 160 4.0 R [14] 100 8.6 R[12]
MeCN 37 13.8 R 51 10.0 R
EtOAc 20 9.0 R 15 6.2 R
Toluene 36 2.7 R 60 4.6 R

aConditions: 0.5¢g substrate, 0.05¢g Pd/C (Selcat), 0.2§grpoline, 0.12g NaOMe, 20 ml solvent, atmospheric pressure an€25

solvents [13]. The results of the hydrogenations of the
substrate §) in different solvents, over palladium on
carbon, are summarized in Table 3.

The conversion and the selectivity were 100% in all
solvents. The initial rates were not changed with the
polarity of the solvents. It is notable that in some sol-
vents (EtOAc, THF, DKM, morpholine, DMF), with-
out NaOMe, the product shows small optical activity
(ee < 5%). Significant enantioselectivity can be ob-
tained only by using NaOMe. In two aprotic solvents
(ethyl acetate and acetonitrile), the enantioselectivity
was 20%, this can be attributed to the solubility of
proline sodium. Among these conditions, the substrate
(1) and @) were hydrogenated too (Table 4).

Comparing the corresponding data of Tables 3 and
4, the enantiomeric excesses are lower in the hydro-
genation ofl and3 than in that of5. Acetonitrile was
the appropriate solvent in all reduction bf3 and>5.

4, Conclusion

Exocyclic a,B-unsaturated ketones could be con-

The enantioselectivity and the reaction rate were
different for the five-, six- or seven-member saturated
ring containing compounds under the same reaction
conditions. These significant differences between the
enantioselectivity values can be attributed to structural
reasons as mentioned in [15].

The enantioselective hydrogenations1pf3 and5
with chiral modified catalyst is in progress.
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